{ "id": "1106.2758", "version": "v1", "published": "2011-06-14T16:31:28.000Z", "updated": "2011-06-14T16:31:28.000Z", "title": "On a Class of Special Riemannian Manifolds", "authors": [ "Dimitar Razpopov" ], "comment": "4 pages", "categories": [ "math.DG" ], "abstract": "We consider a four dimensional Riemannian manifold M with a metric g and an affinor structure q. We note the local coordinates of g and q are circulant matrices. Their first orders are (A, B, C, B)(A, B, C are smooth functions on M) and (0, 1, 0, 0), respectively. Let nabla be the connection of g. Then we obtain: 1) q^{4}=id; g(qx, qy)=g(x,y), x, y are arbitrary vector fields on M, 2) nabla q =0 if and only if grad A=(grad C)q^{2}; 2.grad B= (grad C)(q+q^{3}),", "revisions": [ { "version": "v1", "updated": "2011-06-14T16:31:28.000Z" } ], "analyses": { "subjects": [ "53C15", "53B20" ], "keywords": [ "special riemannian manifolds", "dimensional riemannian manifold", "arbitrary vector fields", "affinor structure", "local coordinates" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.2758R" } } }