{ "id": "1106.1689", "version": "v2", "published": "2011-06-08T23:55:29.000Z", "updated": "2011-07-13T11:26:35.000Z", "title": "Ballistic Behavior for Random Schrödinger Operators on the Bethe Strip", "authors": [ "Abel Klein", "Christian Sadel" ], "comment": "33 pages, revised version, to appear in Journal of Spectral Theory", "journal": "J. Spectr. Theory 1, 409-442 (2011)", "doi": "10.4171/JST/18", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "The Bethe Strip of width $m$ is the cartesian product $\\B\\times\\{1,...,m\\}$, where $\\B$ is the Bethe lattice (Cayley tree). We consider Anderson-like Hamiltonians $H_\\lambda=\\frac12 \\Delta \\otimes 1 + 1 \\otimes A+\\lambda \\Vv$ on a Bethe strip with connectivity $K \\geq 2$, where $A$ is an $m\\times m$ symmetric matrix, $\\Vv$ is a random matrix potential, and $\\lambda$ is the disorder parameter. Under certain conditions on $A$ and $K$, for which we previously proved the existence of absolutely continuous spectrum for small $\\lambda$, we now obtain ballistic behavior for the spreading of wave packets evolving under $H_\\lambda$ for small $\\lambda$.", "revisions": [ { "version": "v2", "updated": "2011-07-13T11:26:35.000Z" } ], "analyses": { "subjects": [ "82B44", "47B80", "60H25" ], "keywords": [ "random schrödinger operators", "bethe strip", "ballistic behavior", "random matrix potential", "cayley tree" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1689K" } } }