{ "id": "1106.1501", "version": "v1", "published": "2011-06-08T05:07:35.000Z", "updated": "2011-06-08T05:07:35.000Z", "title": "Lipschitz stability in an inverse problem for the wave equation", "authors": [ "Lucie Baudouin" ], "categories": [ "math.AP", "math.OC" ], "abstract": "We are interested in the inverse problem of the determination of the potential $p(x), x\\in\\Omega\\subset\\mathbb{R}^n$ from the measurement of the normal derivative $\\partial_\\nu u$ on a suitable part $\\Gamma_0$ of the boundary of $\\Omega$, where $u$ is the solution of the wave equation $\\partial_{tt}u(x,t)-\\Delta u(x,t)+p(x)u(x,t)=0$ set in $\\Omega\\times(0,T)$ and given Dirichlet boundary data. More precisely, we will prove local uniqueness and stability for this inverse problem and the main tool will be a global Carleman estimate, result also interesting by itself.", "revisions": [ { "version": "v1", "updated": "2011-06-08T05:07:35.000Z" } ], "analyses": { "keywords": [ "inverse problem", "wave equation", "lipschitz stability", "dirichlet boundary data", "global carleman estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1501B" } } }