{ "id": "1106.1400", "version": "v4", "published": "2011-06-07T17:51:28.000Z", "updated": "2013-12-13T12:14:01.000Z", "title": "Minimal supersolutions of convex BSDEs", "authors": [ "Samuel Drapeau", "Gregor Heyne", "Michael Kupper" ], "comment": "Published in at http://dx.doi.org/10.1214/13-AOP834 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2013, Vol. 41, No. 6, 3973-4001", "doi": "10.1214/13-AOP834", "categories": [ "math.PR" ], "abstract": "We study the nonlinear operator of mapping the terminal value $\\xi$ to the corresponding minimal supersolution of a backward stochastic differential equation with the generator being monotone in $y$, convex in $z$, jointly lower semicontinuous and bounded below by an affine function of the control variable $z$. We show existence, uniqueness, monotone convergence, Fatou's lemma and lower semicontinuity of this operator. We provide a comparison principle for minimal supersolutions of BSDEs.", "revisions": [ { "version": "v4", "updated": "2013-12-13T12:14:01.000Z" } ], "analyses": { "keywords": [ "convex bsdes", "backward stochastic differential equation", "corresponding minimal supersolution", "terminal value", "nonlinear operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1400D" } } }