{ "id": "1106.1255", "version": "v1", "published": "2011-06-07T04:00:21.000Z", "updated": "2011-06-07T04:00:21.000Z", "title": "Connectivity of Kronecker products by K2", "authors": [ "Wei Wang", "Zhidan Yan" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "Let $\\kappa(G)$ be the connectivity of $G$. The Kronecker product $G_1\\times G_2$ of graphs $G_1$ and $G_2$ has vertex set $V(G_1\\times G_2)=V(G_1)\\times V(G_2)$ and edge set $E(G_1\\times G_2)=\\{(u_1,v_1)(u_2,v_2):u_1u_2\\in E(G_1),v_1v_2\\in E(G_2)\\}$. In this paper, we prove that $\\kappa(G\\times K_2)=\\textup{min}\\{2\\kappa(G), \\textup{min}\\{|X|+2|Y|\\}\\}$, where the second minimum is taken over all disjoint sets $X,Y\\subseteq V(G)$ satisfying (1)$G-(X\\cup Y)$ has a bipartite component $C$, and (2) $G[V(C)\\cup \\{x\\}]$ is also bipartite for each $x\\in X$.", "revisions": [ { "version": "v1", "updated": "2011-06-07T04:00:21.000Z" } ], "analyses": { "subjects": [ "05C40", "05C40" ], "keywords": [ "kronecker product", "connectivity", "vertex set", "edge set", "disjoint sets" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1255W" } } }