{ "id": "1106.1191", "version": "v1", "published": "2011-06-06T20:21:36.000Z", "updated": "2011-06-06T20:21:36.000Z", "title": "Specialization to the tangent cone and Whitney Equisingularity", "authors": [ "Arturo Giles Flores" ], "categories": [ "math.AG" ], "abstract": "Let (X,0) be a reduced, equidimensional germ of analytic singularity with reduced tangent cone (C_{X,0},0). We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part \\X^0 of the specialization to the tangent cone \\phi: \\X \\to \\C to satisfy Whitney's conditions along the parameter axis Y. This result is a first step in generalizing to higher dimensions L\\^e and Teissier's result for hypersurfaces of \\C^3 which establishes the Whitney equisingularity of X and its tangent cone under this conditions.", "revisions": [ { "version": "v1", "updated": "2011-06-06T20:21:36.000Z" } ], "analyses": { "subjects": [ "14J17", "32S15" ], "keywords": [ "whitney equisingularity", "specialization", "satisfy whitneys conditions", "smooth part", "reduced tangent cone" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1191F" } } }