{ "id": "1106.1148", "version": "v1", "published": "2011-05-31T10:04:52.000Z", "updated": "2011-05-31T10:04:52.000Z", "title": "An improved sum-product estimate over finite fields", "authors": [ "Liangpan Li", "Oliver Roche-Newton" ], "categories": [ "math.CO" ], "abstract": "This paper gives an improved sum-product estimate for subsets of a finite field whose order is not prime. It is shown, under certain conditions, that $$\\max\\{|A+A|,|A\\cdot{A}|\\}\\gg{\\frac{|A|^{12/11}}{(\\log_2|A|)^{5/11}}}.$$ This new estimate matches, up to a logarithmic factor, the current best known bound obtained over prime fields by Rudnev (\\cite{mishaSP}).", "revisions": [ { "version": "v1", "updated": "2011-05-31T10:04:52.000Z" } ], "analyses": { "keywords": [ "finite field", "sum-product estimate", "estimate matches", "prime fields", "logarithmic factor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.1148L" } } }