{ "id": "1106.0535", "version": "v2", "published": "2011-06-02T23:22:34.000Z", "updated": "2012-01-20T16:07:02.000Z", "title": "A combinatorial description of the Gindikin-Karpelevich formula in type A", "authors": [ "Kyu-Hwan Lee", "Ben Salisbury" ], "comment": "17 pages. Edited using comments from referees", "journal": "J. Combin. Theory Ser. A. 119 (2012), 1081-1094", "doi": "10.1016/j.jcta.2012.01.011", "categories": [ "math.CO", "math.RT" ], "abstract": "A combinatorial description of the crystal $\\mathcal{B}(\\infty)$ for finite-dimensional simple Lie algebras in terms of Young tableaux was developed by J. Hong and H. Lee. Using this description, we obtain a combinatorial rule for expressing the Gindikin-Karpelevich formula as a sum over $\\mathcal{B}(\\infty)$ when the underlying Lie algebra is of type A. We also interpret our description in terms of MV polytopes and irreducible components of quiver varieties.", "revisions": [ { "version": "v2", "updated": "2012-01-20T16:07:02.000Z" } ], "analyses": { "keywords": [ "gindikin-karpelevich formula", "combinatorial description", "finite-dimensional simple lie algebras", "young tableaux", "combinatorial rule" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.0535L" } } }