{ "id": "1105.6119", "version": "v1", "published": "2011-05-30T21:37:51.000Z", "updated": "2011-05-30T21:37:51.000Z", "title": "Lagrangian Mean Curvature flow for entire Lipschitz graphs II", "authors": [ "Albert Chau", "Jingyi Chen", "Yu Yuan" ], "comment": "17 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We prove longtime existence and estimates for solutions to a fully nonlinear Lagrangian parabolic equation with locally $C^{1,1}$ initial data $u_0$ satisfying either (1) $-(1+\\eta) I_n\\leq D^2u_0 \\leq (1+\\eta)I_n$ for some positive dimensional constant $\\eta$, (2) $u_0$ is weakly convex everywhere or (3) $u_0$ satisfies a large supercritical Lagrangian phase condition.", "revisions": [ { "version": "v1", "updated": "2011-05-30T21:37:51.000Z" } ], "analyses": { "subjects": [ "53C44", "53A10" ], "keywords": [ "lagrangian mean curvature flow", "entire lipschitz graphs", "large supercritical lagrangian phase condition", "fully nonlinear lagrangian parabolic equation" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.6119C" } } }