{ "id": "1105.6066", "version": "v1", "published": "2011-05-30T18:49:36.000Z", "updated": "2011-05-30T18:49:36.000Z", "title": "On the divisibility of $#\\Hom(Γ,G)$ by $|G|", "authors": [ "Fernando Rodriguez Villegas", "Cameron Gordon" ], "categories": [ "math.GR", "math.CO" ], "abstract": "We extend and reformulate a result of Solomon on the divisibility of the title. We show, for example, that if $\\Gamma$ is a finitely generated group, then $|G|$ divides $#\\Hom(\\Gamma,G)$ for every finite group $G$ if and only if $\\Gamma$ has infinite abelianization. As a consequence we obtain some arithmetic properties of the number of subgroups of a given index in such a group $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2011-05-30T18:49:36.000Z" } ], "analyses": { "keywords": [ "divisibility", "finite group", "infinite abelianization", "arithmetic properties", "finitely generated group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.6066R" } } }