{ "id": "1105.6017", "version": "v2", "published": "2011-05-30T15:29:22.000Z", "updated": "2011-06-02T16:52:14.000Z", "title": "Convex Hulls in the Hyperbolic Space", "authors": [ "Itai Benjamini", "Ronen Eldan" ], "comment": "7 pages", "journal": "Geometriae Dedicata, Volume 160, Issue 1 , pp 365-371 (2012)", "doi": "10.1007/s10711-011-9687-8", "categories": [ "math.MG", "math.DG" ], "abstract": "We show that there exists a universal constant C>0 such that the convex hull of any N points in the hyperbolic space H^n is of volume smaller than C N, and that for any dimension n there exists a constant C_n > 0 such that for any subset A of H^n, Vol(Conv(A_1)) < C_n Vol(A_1) where A_1 is the set of points of hyperbolic distance to A smaller than 1.", "revisions": [ { "version": "v2", "updated": "2011-06-02T16:52:14.000Z" } ], "analyses": { "keywords": [ "hyperbolic space", "convex hull", "hyperbolic distance", "universal constant" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.6017B" } } }