{ "id": "1105.5930", "version": "v2", "published": "2011-05-30T10:21:43.000Z", "updated": "2011-05-31T08:05:37.000Z", "title": "Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability", "authors": [ "Piero D'Ancona", "Renato Luca'" ], "categories": [ "math.AP", "math.CA" ], "abstract": "We prove an extension of the Stein-Weiss weighted estimates for fractional integrals, in the context of $L^{p}$ spaces with different integrability properties in the radial and the angular direction. In this way, the classical estimates can be unified with their improved radial versions. A number of consequences are obtained: in particular we deduce precised versions of weighted Sobolev embeddings, Caffarelli-Kohn-Nirenberg estimates, and Strichartz estimates for the wave equation, which extend the radial improvements to the case of arbitrary functions.", "revisions": [ { "version": "v2", "updated": "2011-05-31T08:05:37.000Z" } ], "analyses": { "keywords": [ "caffarelli-kohn-nirenberg inequalities", "angular integrability", "radial improvements", "wave equation", "fractional integrals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.5930D" } } }