{ "id": "1105.5770", "version": "v3", "published": "2011-05-29T09:43:32.000Z", "updated": "2013-07-26T05:43:01.000Z", "title": "A Connection Formula for the $q$-Confluent Hypergeometric Function", "authors": [ "Takeshi Morita" ], "journal": "SIGMA 9 (2013), 050, 13 pages", "doi": "10.3842/SIGMA.2013.050", "categories": [ "math.CA" ], "abstract": "We show a connection formula for the $q$-confluent hypergeometric functions ${}_2\\varphi_1(a,b;0;q,x)$. Combining our connection formula with Zhang's connection formula for ${}_2\\varphi_0(a,b;-;q,x)$, we obtain the connection formula for the $q$-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit $q\\to 1^{-}$ of our connection formula.", "revisions": [ { "version": "v3", "updated": "2013-07-26T05:43:01.000Z" } ], "analyses": { "subjects": [ "33D15", "34M40", "39A13" ], "keywords": [ "kummers confluent hypergeometric functions", "zhangs connection formula", "confluent hypergeometric equation", "matrix form" ], "tags": [ "journal article" ], "publication": { "journal": "SIGMA", "year": 2013, "month": "Jul", "volume": 9, "pages": "050" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013SIGMA...9..050M" } } }