{ "id": "1105.5598", "version": "v2", "published": "2011-05-27T16:00:57.000Z", "updated": "2011-06-03T21:17:28.000Z", "title": "The Schwarzian derivative and polynomial iteration", "authors": [ "Hexi Ye" ], "categories": [ "math.DS" ], "abstract": "We consider the Schwarzian derivative $S_f$ of a complex polynomial $f$ and its iterates. We show that the sequence $S_{f^n}/d^{2n}$ converges to $-2(\\partial G_f)^2$, for $G_f$ the escape-rate function of $f$. As a quadratic differential, the Schwarzian derivative $S_{f^n}$ determines a conformal metric on the plane. We study the ultralimit of these metric spaces.", "revisions": [ { "version": "v2", "updated": "2011-06-03T21:17:28.000Z" } ], "analyses": { "keywords": [ "schwarzian derivative", "polynomial iteration", "metric spaces", "complex polynomial", "quadratic differential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.5598Y" } } }