{ "id": "1105.5508", "version": "v1", "published": "2011-05-27T09:45:28.000Z", "updated": "2011-05-27T09:45:28.000Z", "title": "Heegaard Floer homologies for (+1) surgeries on torus knots", "authors": [ "Maciej Borodzik", "András Némethi" ], "comment": "12 pages, 1 figure", "categories": [ "math.GT" ], "abstract": "We compute the Heegaard Floer homology of $S^3_1(K)$ (the (+1) surgery on the torus knot $T_{p,q}$) in terms of the semigroup generated by $p$ and $q$, and we find a compact formula (involving Dedekind sums) for the corresponding Ozsvath--Szabo d-invariant. We relate the result to known knot invariants of $T_{p,q}$ as the genus and the Levine--Tristram signatures. Furthermore, we emphasize the striking resemblance between Heegaard Floer homologies of (+1) and (-1) surgeries on torus knots. This relation is best seen at the level of $\\tau$ functions.", "revisions": [ { "version": "v1", "updated": "2011-05-27T09:45:28.000Z" } ], "analyses": { "subjects": [ "57M27" ], "keywords": [ "heegaard floer homology", "torus knot", "dedekind sums", "compact formula", "corresponding ozsvath-szabo d-invariant" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.5508B" } } }