{ "id": "1105.5373", "version": "v1", "published": "2011-05-26T18:59:40.000Z", "updated": "2011-05-26T18:59:40.000Z", "title": "Geometric configurations in the ring of integers modulo $p^{\\ell}$", "authors": [ "David Covert", "Alex Iosevich", "Jonathan Pakianathan" ], "comment": "21 pages", "categories": [ "math.CO", "math.CA", "math.NT" ], "abstract": "We study variants of the Erd\\H os distance problem and dot products problem in the setting of the integers modulo $q$, where $q = p^{\\ell}$ is a power of an odd prime.", "revisions": [ { "version": "v1", "updated": "2011-05-26T18:59:40.000Z" } ], "analyses": { "keywords": [ "integers modulo", "geometric configurations", "os distance problem", "dot products problem", "study variants" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.5373C" } } }