{ "id": "1105.4453", "version": "v1", "published": "2011-05-23T10:00:13.000Z", "updated": "2011-05-23T10:00:13.000Z", "title": "Saturating Sperner families", "authors": [ "Dániel Gerbner", "Balázs Keszegh", "Nathan Lemons", "Dömötör Pálvölgyi", "Cory Palmer", "Balázs Patkós" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "A family $\\cF \\subseteq 2^{[n]}$ saturates the monotone decreasing property $\\cP$ if $\\cF$ satisfies $\\cP$ and one cannot add any set to $\\cF$ such that property $\\cP$ is still satisfied by the resulting family. We address the problem of finding the minimum size of a family saturating the $k$-Sperner property and the minimum size of a family that saturates the Sperner property and that consists only of $l$-sets and $(l+1)$-sets.", "revisions": [ { "version": "v1", "updated": "2011-05-23T10:00:13.000Z" } ], "analyses": { "subjects": [ "05D05" ], "keywords": [ "saturating sperner families", "sperner property", "monotone decreasing property", "minimum size" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.4453G" } } }