{ "id": "1105.4214", "version": "v1", "published": "2011-05-21T05:45:59.000Z", "updated": "2011-05-21T05:45:59.000Z", "title": "An Inequality Related to Bifractional Brownian Motion", "authors": [ "Mikhail Lifshits", "Ilya Tyurin" ], "comment": "5 pages", "categories": [ "math.PR" ], "abstract": "We prove that for any pair of i.i.d. random variables $X,Y$ with finite moment of order $a \\in (0,2]$ it is true that $E |X-Y|^a \\leq E |X+Y|^a$. Surprisingly, this inequality turns out to be related with bifractional Brownian motion. We extend this result to Bernstein functions and provide some counter-examples.", "revisions": [ { "version": "v1", "updated": "2011-05-21T05:45:59.000Z" } ], "analyses": { "subjects": [ "60E15", "60G22" ], "keywords": [ "bifractional brownian motion", "random variables", "finite moment", "inequality turns" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.4214L" } } }