{ "id": "1105.3839", "version": "v2", "published": "2011-05-19T10:49:59.000Z", "updated": "2013-07-25T08:52:15.000Z", "title": "Random fields and the geometry of Wiener space", "authors": [ "Jonathan E. Taylor", "Sreekar Vadlamani" ], "comment": "Published in at http://dx.doi.org/10.1214/11-AOP730 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2013, Vol. 41, No. 4, 2724-2754", "doi": "10.1214/11-AOP730", "categories": [ "math.PR" ], "abstract": "In this work we consider infinite dimensional extensions of some finite dimensional Gaussian geometric functionals called the Gaussian Minkowski functionals. These functionals appear as coefficients in the probability content of a tube around a convex set $D\\subset\\mathbb{R}^k$ under the standard Gaussian law $N(0,I_{k\\times k})$. Using these infinite dimensional extensions, we consider geometric properties of some smooth random fields in the spirit of [Random Fields and Geometry (2007) Springer] that can be expressed in terms of reasonably smooth Wiener functionals.", "revisions": [ { "version": "v2", "updated": "2013-07-25T08:52:15.000Z" } ], "analyses": { "keywords": [ "random fields", "wiener space", "infinite dimensional extensions", "finite dimensional gaussian geometric functionals", "gaussian minkowski functionals" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3839T" } } }