{ "id": "1105.3663", "version": "v1", "published": "2011-05-18T15:41:40.000Z", "updated": "2011-05-18T15:41:40.000Z", "title": "Finite groups with $\\Bbb P$-subnormal 2-maximal subgroups", "authors": [ "V. N. Kniahina", "V. S. Monakhov" ], "categories": [ "math.GR" ], "abstract": "A subgroup $H$ of a group $G$ is called $\\Bbb P$-{\\sl subnormal} in $G$ if either $H=G$ or there is a chain of subgroups $H=H_0\\subset H_1\\subset...\\subset H_n=G$ such that $|H_i:H_{i-1}|$ is prime for $1\\le i\\le n$. In this paper we study the groups all of whose 2-maximal subgroups are $\\Bbb P$-subnormal.", "revisions": [ { "version": "v1", "updated": "2011-05-18T15:41:40.000Z" } ], "analyses": { "keywords": [ "finite groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3663K" } } }