{ "id": "1105.3449", "version": "v1", "published": "2011-05-17T18:55:56.000Z", "updated": "2011-05-17T18:55:56.000Z", "title": "Big $q$-ample Line Bundles", "authors": [ "Morgan V Brown" ], "comment": "9 pages, 2 pdf figures", "doi": "10.1112/S0010437X11007457", "categories": [ "math.AG" ], "abstract": "A recent paper of Totaro develops a theory of $q$-ample bundles in characteristic 0. Specifically, a line bundle $L$ on $X$ is $q$-ample if for every coherent sheaf $\\mathcal{F}$ on $X$, there exists an integer $m_0$ such that $m\\geq m_0$ implies $H^i(X,\\mathcal{F}\\otimes \\mathcal{O}(mL))=0$ for $i>q$. We show that a line bundle $L$ on a complex projective scheme $X$ is $q$-ample if and only if the restriction of $L$ to its augmented base locus is $q$-ample. In particular, when $X$ is a variety and $L$ is big but fails to be $q$-ample, then there exists a codimension 1 subscheme $D$ of $X$ such that the restriction of $L$ to $D$ is not $q$-ample.", "revisions": [ { "version": "v1", "updated": "2011-05-17T18:55:56.000Z" } ], "analyses": { "subjects": [ "14C20" ], "keywords": [ "ample line bundles", "coherent sheaf", "ample bundles", "complex projective scheme", "restriction" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3449B" } } }