{ "id": "1105.3407", "version": "v2", "published": "2011-05-17T15:04:51.000Z", "updated": "2012-05-25T11:16:49.000Z", "title": "A Koszul category of representations of finitary Lie algebras", "authors": [ "Elizabeth Dan-Cohen", "Ivan Penkov", "Vera Serganova" ], "comment": "22 pages", "categories": [ "math.RT" ], "abstract": "We find for each simple finitary Lie algebra $\\mathfrak{g}$ a category $\\mathbb{T}_\\mathfrak{g}$ of integrable modules in which the tensor product of copies of the natural and conatural modules are injective. The objects in $\\mathbb{T}_\\mathfrak{g}$ can be defined as the finite length absolute weight modules, where by absolute weight module we mean a module which is a weight module for every splitting Cartan subalgebra of $\\mathfrak{g}$. The category $\\mathbb{T}_\\mathfrak{g}$ is Koszul in the sense that it is antiequivalent to the category of locally unitary finite-dimensional modules over a certain direct limit of finite-dimensional Koszul algebras. We describe these finite-dimensional algebras explicitly. We also prove an equivalence of the categories $\\mathbb{T}_{o(\\infty)}$ and $\\mathbb{T}_{sp(\\infty)}$ corresponding respectively to the orthogonal and symplectic finitary Lie algebras $o(\\infty)$, $sp(\\infty)$.", "revisions": [ { "version": "v2", "updated": "2012-05-25T11:16:49.000Z" } ], "analyses": { "subjects": [ "17B65", "17B10", "16G10" ], "keywords": [ "koszul category", "finite length absolute weight modules", "simple finitary lie algebra", "symplectic finitary lie algebras", "representations" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3407D" } } }