{ "id": "1105.3056", "version": "v1", "published": "2011-05-16T10:18:56.000Z", "updated": "2011-05-16T10:18:56.000Z", "title": "A Note on Rate of Convergence in Probability to Semicircular Law", "authors": [ "Zhidong Bai", "Jiang Hu", "Guangming Pan", "Wang Zhou" ], "comment": "13 pages", "categories": [ "math.PR" ], "abstract": "In the present paper, we prove that under the assumption of the finite sixth moment for elements of a Wigner matrix, the convergence rate of its empirical spectral distribution to the Wigner semicircular law in probability is $O(n^{-1/2})$ when the dimension $n$ tends to infinity.", "revisions": [ { "version": "v1", "updated": "2011-05-16T10:18:56.000Z" } ], "analyses": { "subjects": [ "60F15", "62H99" ], "keywords": [ "probability", "finite sixth moment", "wigner semicircular law", "wigner matrix", "convergence rate" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3056B" } } }