{ "id": "1105.3028", "version": "v1", "published": "2011-05-16T08:18:41.000Z", "updated": "2011-05-16T08:18:41.000Z", "title": "Equivariant Kasparov theory of finite groups via Mackey functors", "authors": [ "Ivo Dell'Ambrogio" ], "comment": "28 pages", "categories": [ "math.OA", "math.KT" ], "abstract": "Let G be a finite group. We systematically exploit general homological methods in order to reduce the computation of G-equivariant KK-theory to topological equivariant K-theory. The key observation is that the functor assigning to a separable G-C*-algebra the collection of all its equivariant K-theory groups lifts naturally to a homological functor taking values in the abelian tensor category of Mackey modules over the classical representation Green functor for G. This fact yields a new universal coefficient and a new Kuenneth spectral sequence for the G-equivariant Kasparov category, whose convergence behavior is nice for all G-C*-algebras in a certain bootstrap class.", "revisions": [ { "version": "v1", "updated": "2011-05-16T08:18:41.000Z" } ], "analyses": { "subjects": [ "46L80", "46M18", "19A22" ], "keywords": [ "equivariant kasparov theory", "finite group", "mackey functors", "equivariant k-theory groups lifts", "systematically exploit general homological methods" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.3028D" } } }