{ "id": "1105.2847", "version": "v1", "published": "2011-05-13T22:24:19.000Z", "updated": "2011-05-13T22:24:19.000Z", "title": "On the value distribution of the Epstein zeta function in the critical strip", "authors": [ "Anders Södergren" ], "comment": "36 pages, 2 figures", "categories": [ "math.NT" ], "abstract": "We study the value distribution of the Epstein zeta function $E_n(L,s)$ for $00$ we determine the limit distribution of the random function $c\\mapsto V_n^{-2c}E_n(\\cdot,cn)$, $c\\in[1/4 +\\ve, 1/2-\\ve]$. After compensating for the pole at $c=\\frac12$ we even obtain a limit result on the whole interval $[\\frac14+\\ve,\\frac12]$, and as a special case we deduce the following strengthening of a result by Sarnak and Str\\\"ombergsson concerning the height function $h_n(L)$ of the flat torus $\\R^n/L$: The random variable $n\\big\\{h_n(L)-(\\log(4\\pi)-\\gamma+1)\\big\\}+\\log n$ has a limit distribution as $n\\to\\infty$, which we give explicitly. Finally we discuss a question posed by Sarnak and Str\\\"ombergsson as to whether there exists a lattice $L\\subset\\R^n$ for which $E_n(L,s)$ has no zeros in $(0,\\infty)$.", "revisions": [ { "version": "v1", "updated": "2011-05-13T22:24:19.000Z" } ], "analyses": { "subjects": [ "11E45" ], "keywords": [ "epstein zeta function", "value distribution", "critical strip", "limit distribution", "dimensional unit ball" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.2847S" } } }