{ "id": "1105.2735", "version": "v3", "published": "2011-05-13T14:19:20.000Z", "updated": "2013-01-17T04:13:23.000Z", "title": "On a generalization of the generating function for Gegenbauer polynomials", "authors": [ "Howard S. Cohl" ], "categories": [ "math.CA", "math-ph", "math.AP", "math.MP" ], "abstract": "A generalization of the generating function for Gegenbauer polynomials is introduced whose coefficients are given in terms of associated Legendre functions of the second kind. We discuss how our expansion represents a generalization of several previously derived formulae such as Heine's formula and Heine's reciprocal square-root identity. We also show how this expansion can be used to compute hyperspherical harmonic expansions for power-law fundamental solutions of the polyharmonic equation.", "revisions": [ { "version": "v3", "updated": "2013-01-17T04:13:23.000Z" } ], "analyses": { "subjects": [ "35A08", "35J05", "32Q45", "31C12", "33C05", "42A16" ], "keywords": [ "gegenbauer polynomials", "generating function", "generalization", "heines reciprocal square-root identity", "power-law fundamental solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.2735C" } } }