{ "id": "1105.2556", "version": "v2", "published": "2011-05-12T19:51:51.000Z", "updated": "2012-02-07T18:53:12.000Z", "title": "Asymptotic eigenvalue distributions of block-transposed Wishart matrices", "authors": [ "Teodor Banica", "Ion Nechita" ], "journal": "J. Theoret. Probab. 26 (2013), 855-869", "categories": [ "math.PR", "math.OA", "quant-ph" ], "abstract": "We study the partial transposition ${W}^\\Gamma=(\\mathrm{id}\\otimes \\mathrm{t})W\\in M_{dn}(\\mathbb C)$ of a Wishart matrix $W\\in M_{dn}(\\mathbb C)$ of parameters $(dn,dm)$. Our main result is that, with $d\\to\\infty$, the law of $m{W}^\\Gamma$ is a free difference of free Poisson laws of parameters $m(n\\pm 1)/2$. Motivated by questions in quantum information theory, we also derive necessary and sufficient conditions for these measures to be supported on the positive half line.", "revisions": [ { "version": "v2", "updated": "2012-02-07T18:53:12.000Z" } ], "analyses": { "subjects": [ "60B20", "46L54", "81P45" ], "keywords": [ "asymptotic eigenvalue distributions", "block-transposed wishart matrices", "quantum information theory", "free poisson laws", "positive half line" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.2556B" } } }