{ "id": "1105.2427", "version": "v2", "published": "2011-05-12T11:17:09.000Z", "updated": "2011-12-15T20:08:05.000Z", "title": "Small Galois groups that encode valuations", "authors": [ "Ido Efrat", "Jan Minac" ], "comment": "Final version. To appear in Acta Arithmetica", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime number and let $F$ be a field containing a root of unity of order $p$. We prove that a certain very small canonical Galois group $(G_F)_{[3]}$ over $F$ encodes the valuations on $F$ whose value group is not $p$-divisible and which satisfy a variant of Hensel's lemma.", "revisions": [ { "version": "v2", "updated": "2011-12-15T20:08:05.000Z" } ], "analyses": { "subjects": [ "12J10" ], "keywords": [ "small galois groups", "encode valuations", "small canonical galois group", "prime number", "value group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.2427E" } } }