{ "id": "1105.2426", "version": "v2", "published": "2011-05-12T11:08:37.000Z", "updated": "2011-06-02T07:25:53.000Z", "title": "Algebraic versus topological entropy for surfaces over finite fields", "authors": [ "Hélène Esnault", "Vasudevan Srinivas" ], "comment": "18 pages", "categories": [ "math.AG" ], "abstract": "We show that, as in de Rham cohomology over the complex numbers, the value of the entropy of an automorphism of the surface over a finite field $\\F_q $ is taken on the span of the N\\'eron-Severi group inside of $\\ell$-adic cohomology. v2: (some) typos removed, exposition (partly) improved.", "revisions": [ { "version": "v2", "updated": "2011-06-02T07:25:53.000Z" } ], "analyses": { "keywords": [ "finite field", "topological entropy", "neron-severi group inside", "complex numbers", "rham cohomology" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.2426E" } } }