{ "id": "1105.1118", "version": "v3", "published": "2011-05-05T16:33:13.000Z", "updated": "2013-09-11T16:55:50.000Z", "title": "On $\\varphi$-families of probability distributions", "authors": [ "Rui F. Vigelis", "Charles C. Cavalcante" ], "categories": [ "math.PR" ], "abstract": "We generalize the exponential family of probability distributions. In our approach, the exponential function is replaced by a $\\varphi$-function, resulting in a $\\varphi$-family of probability distributions. We show how $\\varphi$-families are constructed. In a $\\varphi$-family, the analogue of the cumulant-generating function is a normalizing function. We define the $\\varphi$-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback-Leibler divergence. A formula for the $\\varphi$-divergence where the $\\varphi$-function is the Kaniadakis' $\\kappa$-exponential function is derived.", "revisions": [ { "version": "v3", "updated": "2013-09-11T16:55:50.000Z" } ], "analyses": { "keywords": [ "probability distributions", "exponential function", "normalizing function", "kullback-leibler divergence", "bregman divergence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.1118V" } } }