{ "id": "1105.0076", "version": "v2", "published": "2011-04-30T11:55:02.000Z", "updated": "2012-01-01T06:42:42.000Z", "title": "A sharp asymptotic remainder estimate for biharmonic Steklov eigenvalues on Riemannian manifolds", "authors": [ "Genqian Liu" ], "comment": "This paper has been withdrawn by the author", "categories": [ "math.AP", "math.DG" ], "abstract": "Let $\\Omega$ be a bounded domain with $C^\\infty$ boundary in an $n$-dimensional $C^\\infty$ Riemannian manifold, and let $\\varrho$ be a non-negative bounded function defined on $\\partial \\Omega$. It is well-known that for the biharmonic equation $\\Delta^2 u=0$ in $\\Omega$ with the 0-Dirichlet boundary condition, there exists an infinite set $\\{u_k\\}$ of biharmonic functions in $\\Omega$ with positive eigenvalues $\\{\\lambda_k\\}$ satisfying $\\Delta u_k+ \\lambda_k \\varrho \\frac{\\partial u_k}{\\partial \\nu}=0$ on the boundary $\\partial \\Omega$. In this paper, we give the Weyl-type asymptotic formula with a sharp remainder estimate for the counting function of the biharmonic Steklov eigenvalues $\\lambda_k$.", "revisions": [ { "version": "v2", "updated": "2012-01-01T06:42:42.000Z" } ], "analyses": { "subjects": [ "35P20", "58C40", "58J50" ], "keywords": [ "sharp asymptotic remainder estimate", "biharmonic steklov eigenvalues", "riemannian manifold", "sharp remainder estimate", "weyl-type asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.0076L" } } }