{ "id": "1104.5252", "version": "v3", "published": "2011-04-27T21:28:58.000Z", "updated": "2012-01-03T00:23:31.000Z", "title": "Flats and Submersions in Non-Negative Curvature", "authors": [ "Curtis Pro", "Frederick Wilhelm" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "We find constraints on the extent to which O'Neill's horizontal curvature equation can be used to create positive curvature on the base space of a Riemannian submersion. In particular, we study when K. Tapp's theorem on Riemannian submersions of compact Lie groups with bi-invariant metrics generalizes to arbitrary manifolds of non-negative curvature.", "revisions": [ { "version": "v3", "updated": "2012-01-03T00:23:31.000Z" } ], "analyses": { "subjects": [ "53C20" ], "keywords": [ "non-negative curvature", "oneills horizontal curvature equation", "riemannian submersion", "compact lie groups", "bi-invariant metrics generalizes" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.5252P" } } }