{ "id": "1104.4792", "version": "v2", "published": "2011-04-25T20:02:49.000Z", "updated": "2011-06-15T22:27:21.000Z", "title": "Topology of the spaces of Morse functions on surfaces", "authors": [ "Elena Kudryavtseva" ], "comment": "15 pages, in Russian", "categories": [ "math.GT", "math.AT" ], "abstract": "Let $M$ be a smooth closed orientable surface, and let $F$ be the space of Morse functions on $M$ such that at least $\\chi(M)+1$ critical points of each function of $F$ are labeled by different labels (enumerated). Endow the space $F$ with $C^\\infty$-topology. We prove the homotopy equivalence $F\\sim R\\times{\\widetilde{\\cal M}}$ where $R$ is one of the manifolds ${\\mathbb R}P^3$, $S^1\\times S^1$ and the point in dependence on the sign of $\\chi(M)$, and ${\\widetilde{\\cal M}}$ is the universal moduli space of framed Morse functions, which is a smooth stratified manifold. Morse inequalities for the Betti numbers of the space $F$ are obtained.", "revisions": [ { "version": "v2", "updated": "2011-06-15T22:27:21.000Z" } ], "analyses": { "subjects": [ "58E05", "57M50", "58K65", "46M18" ], "keywords": [ "universal moduli space", "smooth closed orientable surface", "homotopy equivalence", "framed morse functions", "smooth stratified manifold" ], "note": { "typesetting": "TeX", "pages": 15, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.4792K" } } }