{ "id": "1104.4147", "version": "v3", "published": "2011-04-21T00:43:32.000Z", "updated": "2012-12-18T22:46:38.000Z", "title": "Symmetric chain decomposition of necklace posets", "authors": [ "Vivek Dhand" ], "comment": "Final version, 12 pages", "journal": "Electronic Journal of Combinatorics, 19 (2012) P26", "categories": [ "math.CO", "math.RT" ], "abstract": "A finite ranked poset is called a symmetric chain order if it can be written as a disjoint union of rank-symmetric, saturated chains. If $P$ is any symmetric chain order, we prove that $P^n/\\mathbb{Z}_n$ is also a symmetric chain order, where $\\mathbb{Z}_n$ acts on $P^n$ by cyclic permutation of the factors.", "revisions": [ { "version": "v3", "updated": "2012-12-18T22:46:38.000Z" } ], "analyses": { "keywords": [ "symmetric chain decomposition", "symmetric chain order", "necklace posets", "disjoint union", "cyclic permutation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.4147D" } } }