{ "id": "1104.4089", "version": "v2", "published": "2011-04-20T18:19:58.000Z", "updated": "2011-05-13T02:27:53.000Z", "title": "On the metric dimension of bilinear forms graphs", "authors": [ "Min Feng", "Kaishun Wang" ], "journal": "Discrete Mathematics 312 (2012) 1266-1268", "categories": [ "math.CO" ], "abstract": "The metric dimension of a graph is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. Bailey and Meagher obtained an upper bound on the metric dimension of Grassmann graphs. In this paper we obtain an upper bound on the metric dimension of bilinear forms graphs.", "revisions": [ { "version": "v2", "updated": "2011-05-13T02:27:53.000Z" } ], "analyses": { "subjects": [ "05C12", "05E30" ], "keywords": [ "bilinear forms graphs", "metric dimension", "upper bound", "set uniquely identifies", "grassmann graphs" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.4089F" } } }