{ "id": "1104.3589", "version": "v1", "published": "2011-04-18T20:56:06.000Z", "updated": "2011-04-18T20:56:06.000Z", "title": "Asymptotic stability of Landau solutions to Navier-Stokes system", "authors": [ "Grzegorz Karch", "Dominika Pilarczyk" ], "doi": "10.1007/s00205-011-0415-1", "categories": [ "math.AP" ], "abstract": "It is known that the three dimensional Navier-Stokes system for an incompressible fluid in the whole space has a one parameter family of explicit stationary solutions, which are axisymmetric and homogeneous of degree -1. We show that these solutions are asymptotically stable under any $L^2$-perturbation.", "revisions": [ { "version": "v1", "updated": "2011-04-18T20:56:06.000Z" } ], "analyses": { "subjects": [ "76D07", "76D05", "35Q30", "35B40" ], "keywords": [ "landau solutions", "asymptotic stability", "dimensional navier-stokes system", "explicit stationary solutions", "perturbation" ], "tags": [ "journal article" ], "publication": { "journal": "Archive for Rational Mechanics and Analysis", "year": 2011, "month": "Oct", "volume": 202, "number": 1, "pages": 115 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011ArRMA.202..115K" } } }