{ "id": "1104.3273", "version": "v1", "published": "2011-04-17T02:56:10.000Z", "updated": "2011-04-17T02:56:10.000Z", "title": "Expansive flows of surfaces", "authors": [ "Alfonso Artigue" ], "categories": [ "math.DS" ], "abstract": "We prove that a flow on a compact surface is expansive if and only if the singularities are of saddle type and the union of their separatrices is dense. Moreover we show that such flows are obtained by surgery on the suspension of minimal interval exchange maps.", "revisions": [ { "version": "v1", "updated": "2011-04-17T02:56:10.000Z" } ], "analyses": { "keywords": [ "expansive flows", "minimal interval exchange maps", "saddle type", "compact surface", "suspension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.3273A" } } }