{ "id": "1104.2858", "version": "v1", "published": "2011-04-14T18:20:38.000Z", "updated": "2011-04-14T18:20:38.000Z", "title": "On the center of the ring of differential operators on a smooth variety over $\\bZ/p^n\\bZ$", "authors": [ "Allen Stewart", "Vadim Vologodsky" ], "comment": "16 pages", "doi": "10.1112/S0010437X12000462", "categories": [ "math.AG" ], "abstract": "We compute the center of the ring of PD differential operators on a smooth variety over $\\bZ/p^n\\bZ$ confirming a conjecture of Kaledin. More generally, given an associative algebra $A_0$ over $\\bF_p$ and its flat deformation $A_n$ over $\\bZ/p^{n+1}\\bZ$ we prove that under a certain non-degeneracy condition the center of $A_n$ is isomorphic to the ring of length $n+1$ Witt vectors over the center of $A_0$.", "revisions": [ { "version": "v1", "updated": "2011-04-14T18:20:38.000Z" } ], "analyses": { "subjects": [ "14F10", "14G17", "16S34", "16S80" ], "keywords": [ "smooth variety", "pd differential operators", "flat deformation", "non-degeneracy condition", "witt vectors" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.2858S" } } }