{ "id": "1104.2687", "version": "v1", "published": "2011-04-14T07:59:24.000Z", "updated": "2011-04-14T07:59:24.000Z", "title": "Singularity of projections of 2-dimensional measures invariant under the geodesic flow", "authors": [ "Risto Hovila", "Esa Järvenpää", "Maarit Järvenpää", "François Ledrappier" ], "comment": "12 pages", "categories": [ "math.DS", "math-ph", "math.DG", "math.MP" ], "abstract": "We show that on any compact Riemann surface with variable negative curvature there exists a measure which is invariant and ergodic under the geodesic flow and whose projection to the base manifold is 2-dimensional and singular with respect to the 2-dimensional Lebesgue measure.", "revisions": [ { "version": "v1", "updated": "2011-04-14T07:59:24.000Z" } ], "analyses": { "subjects": [ "37C45", "53D25", "37D20", "28A80" ], "keywords": [ "geodesic flow", "measures invariant", "projection", "singularity", "compact riemann surface" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-011-1387-6", "journal": "Communications in Mathematical Physics", "year": 2012, "month": "May", "volume": 312, "number": 1, "pages": 127 }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012CMaPh.312..127H" } } }