{ "id": "1104.1827", "version": "v1", "published": "2011-04-11T01:49:28.000Z", "updated": "2011-04-11T01:49:28.000Z", "title": "Eberlein almost periodic functions that are not pseudo almost periodic", "authors": [ "Bolis Basit", "Hans Günzler" ], "comment": "6 pages", "journal": "Monash University Analysis Paper 127, March 2011", "categories": [ "math.FA" ], "abstract": "We construct Eberlein almost periodic functions $ f_j : J \\to H$ so that $||f_1(\\cdot)||$ is not ergodic and thus not Eberlein almost periodic and $||f_2(.)||$ is Eberlein almost periodic, but $f_1$ and $f_2$ are not pseudo almost periodic, the Parseval equation for them fails, where $J=\\r_+$ or $\\r$ and $H$ is a Hilbert space. This answers several questions posed by Zhang and Liu [18].", "revisions": [ { "version": "v1", "updated": "2011-04-11T01:49:28.000Z" } ], "analyses": { "keywords": [ "periodic functions", "hilbert space", "construct eberlein", "parseval equation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.1827B" } } }