{ "id": "1104.1554", "version": "v2", "published": "2011-04-08T11:52:04.000Z", "updated": "2013-04-12T03:08:17.000Z", "title": "A Local Limit Theorem for the Minimum of a Random Walk with Markovian Increasements", "authors": [ "Yinna Ye" ], "comment": "40 pages, 3 figures; updated author's present address, corrected typos, unified notations", "categories": [ "math.PR" ], "abstract": "Let $(\\Omega,\\mathcal{F}, \\mathbb{P})$ be a probability space and $E$ be a finite set. Assume that $X=(X_n)$ is an irreducible and aperiodic Markov chain, defined on $(\\Omega,\\mathcal{F}, \\mathbb{P})$, with values in $E$ and with transition probability $P=\\Big(p_{i,j}\\Big)_{i,j}$. Let $(F(i,j,\\d x))_{i,j\\in E}$ be a family of probability measures on $\\mathbb{R}$. Consider a semi-markovian chain $(Y_n,X_n)$ on $\\mathbb{R}\\times E$ with transition probability $\\widetilde{P}$, defined by $\\widetilde{P}\\Big((u,i),A\\times\\{j\\}\\Big)=\\mathbb{P}(Y_{n+1}\\in A,X_{n+1}=j|Y_n= u,X_n=i)=p_{i,j}F(i,j,A)$, for any $(u,i)\\in\\mathbb{R}\\times E$, any Borel set $A\\subset\\mathbb{R}$ and any $j\\in E$. We study the asymptotic behavior of the sequence of Laplace transforms of $(X_n,m_n)$, where $m_n=\\min(S_0,S_1,...,S_n)$ and $S_n=Y_0+...+Y_{n-1}$. Under quite general assumptions on $F(i,j,dx)$, we prove that for all $(i,j)\\in E\\times E$, $\\sqrt{n}\\E_i[\\exp(\\lambda m_n), X_n=j]$ converges to a positive function $H_{i,j}(\\lambda)$ and we obtain further informations on this limit function as $\\lambda\\to 0^+$.", "revisions": [ { "version": "v2", "updated": "2013-04-12T03:08:17.000Z" } ], "analyses": { "keywords": [ "local limit theorem", "random walk", "markovian increasements", "transition probability", "aperiodic markov chain" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.1554Y" } } }