{ "id": "1104.1051", "version": "v1", "published": "2011-04-06T10:20:40.000Z", "updated": "2011-04-06T10:20:40.000Z", "title": "Periodic billiard trajectories in polyhedra", "authors": [ "Nicolas Bedaride" ], "comment": "15 pages, 3 figures", "journal": "Forum geometricorum Volume 8 (2008), pages 107-120", "categories": [ "math.DS" ], "abstract": "We consider the billiard map inside a polyhedron. We give a condition for the stability of the periodic trajectories. We apply this result to the case of the tetrahedron. We deduce the existence of an open set of tetrahedra which have a periodic orbit of length four (generalization of Fagnano's orbit for triangles), moreover we can study completly the orbit of points along this coding.", "revisions": [ { "version": "v1", "updated": "2011-04-06T10:20:40.000Z" } ], "analyses": { "keywords": [ "periodic billiard trajectories", "polyhedron", "billiard map inside", "periodic trajectories", "tetrahedron" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.1051B" } } }