{ "id": "1104.0971", "version": "v1", "published": "2011-04-05T22:58:43.000Z", "updated": "2011-04-05T22:58:43.000Z", "title": "The extension and convergence of mean curvature flow in higher codimension", "authors": [ "Kefeng Liu", "Hongwei Xu", "Fei Ye", "Entao Zhao" ], "comment": "29 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper, we first investigate the integral curvature condition to extend the mean curvature flow of submanifolds in a Riemannian manifold with codimension $d\\geq1$, which generalizes the extension theorem for the mean curvature flow of hypersurfaces due to Le-\\v{S}e\\v{s}um \\cite{LS} and the authors \\cite{XYZ1,XYZ2}. Using the extension theorem, we prove two convergence theorems for the mean curvature flow of closed submanifolds in ${R}^{n+d}$ under suitable integral curvature conditions.", "revisions": [ { "version": "v1", "updated": "2011-04-05T22:58:43.000Z" } ], "analyses": { "keywords": [ "mean curvature flow", "higher codimension", "extension theorem", "suitable integral curvature conditions", "submanifolds" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.0971L" } } }