{ "id": "1104.0907", "version": "v1", "published": "2011-04-05T18:14:10.000Z", "updated": "2011-04-05T18:14:10.000Z", "title": "Weyl group action and semicanonical bases", "authors": [ "Pierre Baumann" ], "journal": "Advances in Mathematics 228 (2011), pp. 2874-2890", "doi": "10.1016/j.aim.2011.07.021", "categories": [ "math.RT" ], "abstract": "Let U be the enveloping algebra of a symmetric Kac-Moody algebra. The Weyl group acts on U, up to a sign. In addition, the positive subalgebra U^+ contains a so-called semicanonical basis, with remarkable properties. The aim of this paper is to show that these two structures are as compatible as possible.", "revisions": [ { "version": "v1", "updated": "2011-04-05T18:14:10.000Z" } ], "analyses": { "subjects": [ "17B10", "05E10", "16G20" ], "keywords": [ "weyl group action", "semicanonical bases", "weyl group acts", "symmetric kac-moody algebra", "enveloping algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.0907B" } } }