{ "id": "1104.0434", "version": "v1", "published": "2011-04-03T22:48:42.000Z", "updated": "2011-04-03T22:48:42.000Z", "title": "A sharp estimate for cover times on binary trees", "authors": [ "Jian Ding", "Ofer Zeitouni" ], "comment": "14 pages, no figure", "categories": [ "math.PR" ], "abstract": "We compute the second order correction for the cover time of the binary tree of depth $n$ by (continuous-time) random walk, and show that with probability approaching 1 as $n$ increases, $\\sqrt{\\tau_{\\mathrm{cov}}}=\\sqrt{|E|}[\\sqrt{2\\log 2}\\cdot n - {\\log n}/{\\sqrt{2\\log 2}} + O((\\log\\logn)^8]$, thus showing that the second order correction differs from the corresponding one for the maximum of the Gaussian free field on the tree.", "revisions": [ { "version": "v1", "updated": "2011-04-03T22:48:42.000Z" } ], "analyses": { "subjects": [ "60J10", "60G60", "60G15" ], "keywords": [ "cover time", "binary tree", "sharp estimate", "second order correction differs", "gaussian free field" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.0434D" } } }