{ "id": "1103.6184", "version": "v1", "published": "2011-03-31T13:57:21.000Z", "updated": "2011-03-31T13:57:21.000Z", "title": "Rellich inequalities with weights", "authors": [ "Paolo Caldiroli", "Roberta Musina" ], "categories": [ "math.FA", "math.AP" ], "abstract": "Let $\\Omega$ be a cone in $\\mathbb{R}^{n}$ with $n\\ge 2$. For every fixed $\\alpha\\in\\mathbb{R}$ we find the best constant in the Rellich inequality $\\int_{\\Omega}|x|^{\\alpha}|\\Delta u|^{2}dx\\ge C\\int_{\\Omega}|x|^{\\alpha-4}|u|^{2}dx$ for $u\\in C^{2}_{c}(\\bar\\Omega\\setminus\\{0\\})$. We also estimate the best constant for the same inequality on $C^{2}_{c}(\\Omega)$. Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.", "revisions": [ { "version": "v1", "updated": "2011-03-31T13:57:21.000Z" } ], "analyses": { "subjects": [ "26D10", "47F05" ], "keywords": [ "rellich inequality", "best constant", "remainder terms", "logarithmic weights" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.6184C" } } }