{ "id": "1103.5654", "version": "v2", "published": "2011-03-29T14:30:35.000Z", "updated": "2014-10-14T09:56:25.000Z", "title": "Perfect matchings in 3-partite 3-uniform hypergraphs", "authors": [ "Allan Lo", "Klas Markström" ], "comment": "Updated. Now published in J. Combinatorial Theory Series A 127 (2014) 22-57", "journal": "J. Combinatorial Theory Series A 127 (2014) 22-57", "categories": [ "math.CO" ], "abstract": "Let $H$ be a $3$-partite $3$-uniform hypergraph, i.e. a $3$-uniform hypergraph such that every edge intersects every partition class in exactly one vertex, with each partition class of size $n$. We determine a Dirac-type vertex degree threshold for perfect matchings in $3$-partite $3$-uniform hypergraphs.", "revisions": [ { "version": "v1", "updated": "2011-03-29T14:30:35.000Z", "abstract": "Let $H$ be a 3-partite 3-uniform hypergraph with each partition class of size $n$, that is, a 3-uniform hypergraph such that every edge intersects every partition class in exactly one vertex. We determine the Dirac-type vertex degree thresholds for perfect matchings in 3-partite 3-uniform hypergraphs.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-14T09:56:25.000Z" } ], "analyses": { "keywords": [ "perfect matchings", "hypergraph", "partition class", "dirac-type vertex degree thresholds", "edge intersects" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.5654L" } } }