{ "id": "1103.5384", "version": "v5", "published": "2011-03-28T14:57:07.000Z", "updated": "2013-02-06T13:28:25.000Z", "title": "Some conjectures on congruences", "authors": [ "Zhi-Hong Sun" ], "comment": "Conjecture 4.46 is new", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p$ be an odd prime. In the paper we collect the author's various conjectures on congruences modulo $p$ or $p^2$, which are concerned with sums of binomial coefficients, Lucas sequences, power residues and special binary quadratic forms.", "revisions": [ { "version": "v5", "updated": "2013-02-06T13:28:25.000Z" } ], "analyses": { "subjects": [ "11A07", "05A10", "11B39", "11E25" ], "keywords": [ "conjectures", "special binary quadratic forms", "odd prime", "congruences modulo", "power residues" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.5384S" } } }