{ "id": "1103.5257", "version": "v1", "published": "2011-03-27T23:20:38.000Z", "updated": "2011-03-27T23:20:38.000Z", "title": "Smooth solutions to the nonlinear wave equation can blow up on Cantor sets", "authors": [ "Rowan Killip", "Monica Visan" ], "categories": [ "math.AP" ], "abstract": "We construct $C^\\infty$ solutions to the one-dimensional nonlinear wave equation $$ u_{tt} - u_{xx} - \\tfrac{2(p+2)}{p^2} |u|^p u=0 \\quad \\text{with} \\quad p>0 $$ that blow up on any prescribed uniformly space-like $C^\\infty$ hypersurface. As a corollary, we show that smooth solutions can blow up (at the first instant) on an arbitrary compact set. We also construct solutions that blow up on general space-like $C^k$ hypersurfaces, but only when $4/p$ is not an integer and $k > (3p+4)/p$.", "revisions": [ { "version": "v1", "updated": "2011-03-27T23:20:38.000Z" } ], "analyses": { "keywords": [ "smooth solutions", "cantor sets", "one-dimensional nonlinear wave equation", "arbitrary compact set", "construct solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.5257K" } } }