{ "id": "1103.5228", "version": "v3", "published": "2011-03-27T15:54:10.000Z", "updated": "2012-09-24T14:23:38.000Z", "title": "Weak invariance principle for the local times of partial sums of Markov Chains", "authors": [ "Michael Bromberg", "Zemer Kosloff" ], "comment": "This is the pre galley proof version of the article; Journal of Theoretical Probability 2012", "categories": [ "math.PR" ], "abstract": "Let X_{n} be an integer valued Markov Chain with finite state space. Let S_{n}=\\sum_{k=0}^{n}X_{k} and let L_{n}(x) be the number of times S_{k} hits x up to step n. Define the normalized local time process t_{n}(x) by t_{n}(x)=\\frac{L_{n}(\\sqrt{n}(x)}{\\sqrt{n}}. The subject of this paper is to prove a functional, weak invariance principle for the normalized sequence t_{n}, i.e. we prove that under some assumptions about the Markov Chain, the normalized local times converge in distribution to the local time of the Brownian Motion.", "revisions": [ { "version": "v3", "updated": "2012-09-24T14:23:38.000Z" } ], "analyses": { "subjects": [ "60F17", "60J10" ], "keywords": [ "weak invariance principle", "partial sums", "finite state space", "integer valued markov chain", "normalized local time process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.5228B" } } }